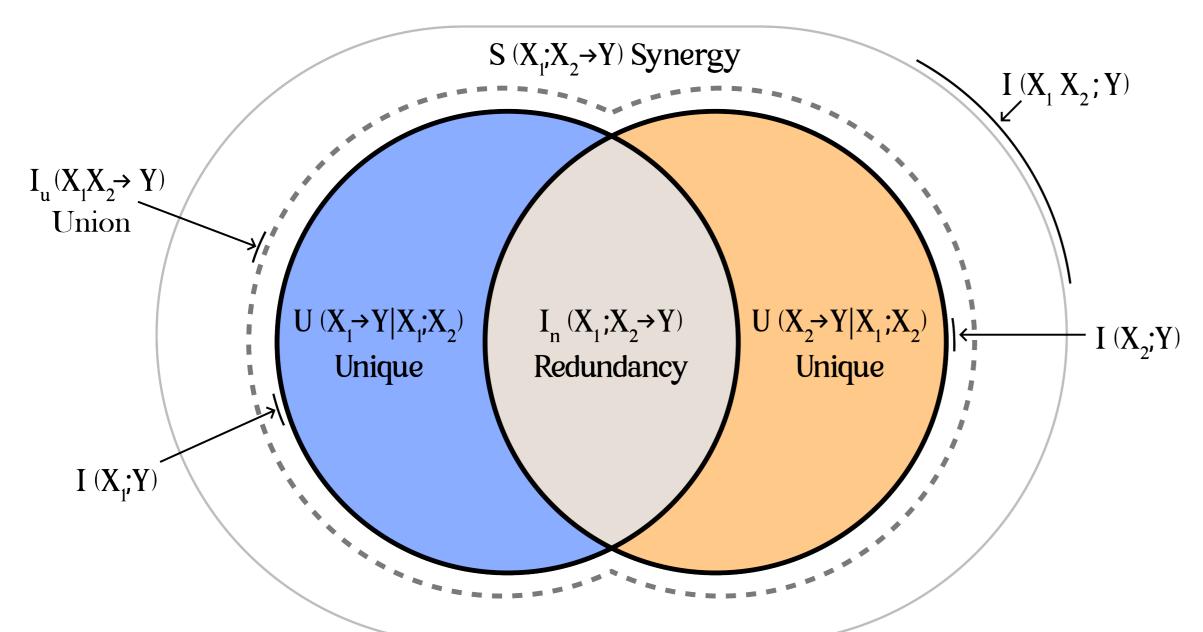


Which Information Matters? Dissecting Human-written Multi-document Summaries with Partial Information Decomposition

Laura Mascarell Yan L'Homme Majed El Helou ETH Zurich


What information constitutes a high-quality multi-document summary?

We propose to categorise the information in a summary into:

- Information provided by a unique source,
- Information provided by at least one source (union),
- Redundant information from all source documents,
- New information derived from considering sources jointly (synergy).

	Source X ₁	Kimchi is fermented cabbage.
	Source X ₂	Fermented foods are rich in probiotics.
	Target Y	Fermented foods, e.g. Kimchi, are rich in probiotics.
	Unique X ₁	The nature and preparation of kimchi.
	Unique X ₂	A general characteristic of fermented foods.
	Redundancy	Information about fermented.
	Synergy	Inferring that Kimchi is a fermented food.

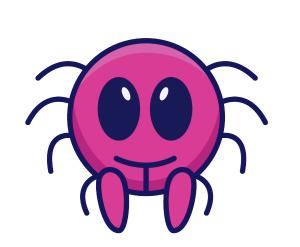
Partial Information Decomposition in MDS

We adopt the Partial Information Decomposition (PID) approach in [1] to MDS, considering sentences as units of information.

Let $\mathcal{X} = \{D_1, ..., D_n\}$ be a set of n source documents, where each document is a collection of sentences $D_i = \{d_i^1, ..., d_i^{|D_i|}\}$, and a multi-document summary of m sentences $S = \{s^1, ..., s^m\}$:

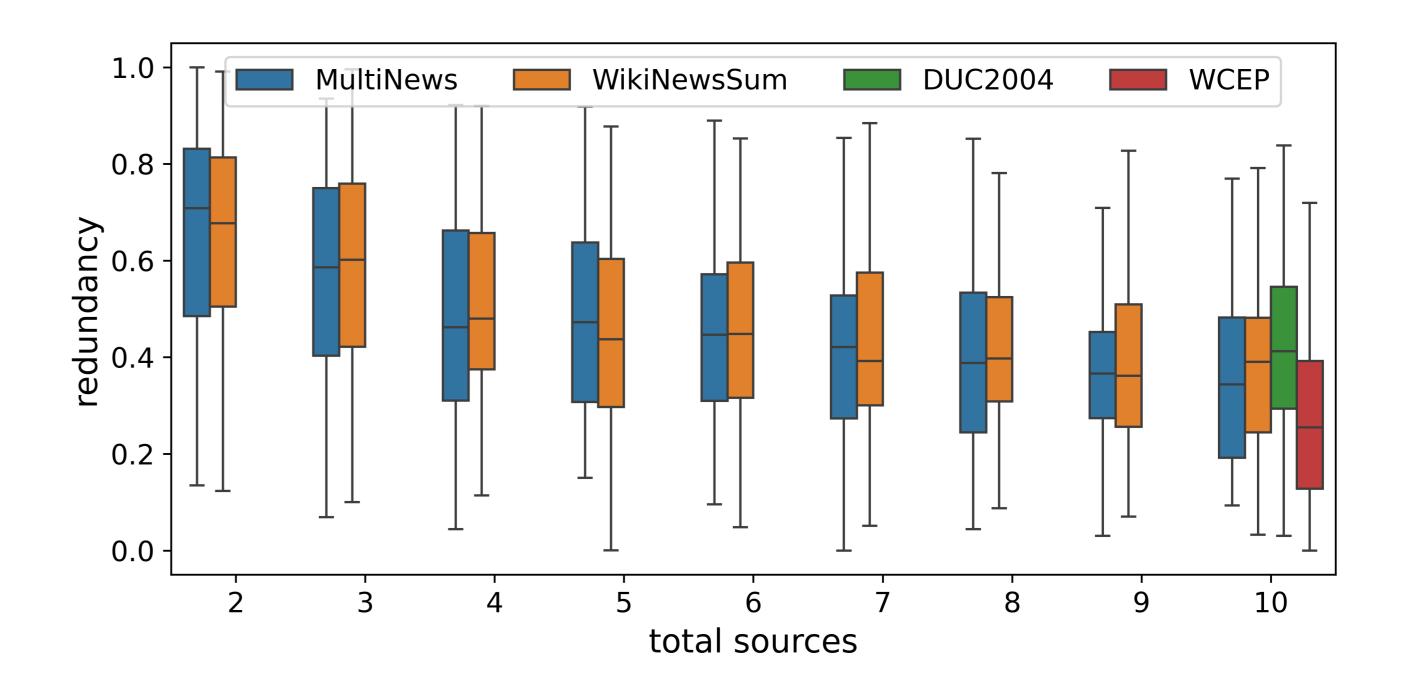
Redundancy is the maximum information we can obtain about the summary that is less informative than any of the sources D_i

$$I_{\cap}^{MDS}(\mathcal{X} \to S) := \sup_{D \in \mathcal{D}} I(S; D) | \forall i, D \sqsubset D_i$$
 (1)


Union is the minimum information we can obtain about the summary that is more informative than any of the sources D_i

$$I_{\cup}^{\mathsf{MDS}}(\mathcal{X} \to S) := \inf_{D \in \mathcal{D}} I(S; D) | \forall i, D_i \sqsubset D$$
 (2)

Unique information U^{MDS} and **Synergy** S^{MDS} are defined using Eq. (1) and Eq. (2), respectively, as in [1]:


$$U^{\text{MDS}}(D_i \to S | \mathcal{X}) = I(S; D_i) - I_{\cap}^{\text{MDS}}, \tag{3}$$

$$S^{\text{MDS}}(\mathcal{X} \to S) = I(S; \mathcal{X}) - I_{\cup}^{\text{MDS}}$$
 (4)

GitHub: github.com/mediatechnologycenter/SPIDer This project is supported by Ringier, TX Group, NZZ, SRG, VSM, viscom, and the ETH Zurich Foundation.

PID of Human-written Summaries

Dataset	Union	Synergy	Redund.	Unique
MultiNews	1.0 (±0.0)	0.0 (±0.0)	0.48 (±0.2)	0.30 (±0.1)
WikiSum	$1.0~(\pm 0.0)$	$0.0~(\pm 0.0)$	$0.48~(\pm 0.2)$	$0.30~(\pm 0.1)$
DUC2004	$1.0~(\pm 0.0)$	$0.0~(\pm 0.0)$	$0.43~(\pm 0.2)$	$0.35~(\pm 0.1)$
WCEP	1.0 (±0.0)	$0.0~(\pm 0.0)$	0.29 (±0.2)	0.41 (±0.2)

- → WCEP is extended with additional source articles not considered in the summaries. Therefore, the scores differ from real MDS datasets.
- \rightarrow Synergy is negligible, so union represents the total mutual information
- → Redundancy decreases with the number of sources.
- \rightarrow The more sources, the more they contribute individually (*see paper*).
- → The first three sources contribute the most in all datasets, regardless of the number of source (see paper).

Measuring Synergistic Information

MultiRC is a reading comprehension dataset that requires multiple source sentences to identify correct answers (Synergy).

We transform MultiRC into a MDS dataset:

- Source documents: each sentence required to answer a question.
- Summary: a concatenated question-answer pair.
- **D**₁ The story revolves around **A.C.P. Ramakant Chaudhary** whose eldest son Vikas is killed in a pre-planned accident.
- **D**₂ Vishal confronts Baba Khan and the ganglords threaten to eliminate the **A.C.P.** as well as **his wife Revati**.

S_{correct} Who is Revati's husband? Ramakant Chaudhary

Sincorrect Who is Revati's husband? Baba Khan

S_{unrelated} How many people comfort the baby? 2

	Union	Synergy	Redund.	Unique
Scorrect	$0.05~(\pm 0.3)$	$0.28~(\pm 0.5)$	$0.02~(\pm 0.2)$	0.04 (±0.1)
$S_{\mathit{incorrect}}$	$0.05~(\pm 0.3)$	$0.26~(\pm 0.5)$	$0.02~(\pm 0.2)$	$0.03~(\pm 0.1)$
$S_{\mathit{unrelated}}$	$0.04~(\pm 0.3)$	$0.24~(\pm 0.5)$	$0.01~(\pm 0.2)$	$0.03~(\pm 0.1)$

→ Synergistic information is the dominant information component and correct answers achieve the highest synergy.

References

[1] Artemy Kolchinsky. A novel approach to the partial information decomposition. *Entropy*, 2022.